AFOQT Advanced Math Techniques (Not toooo advanced)

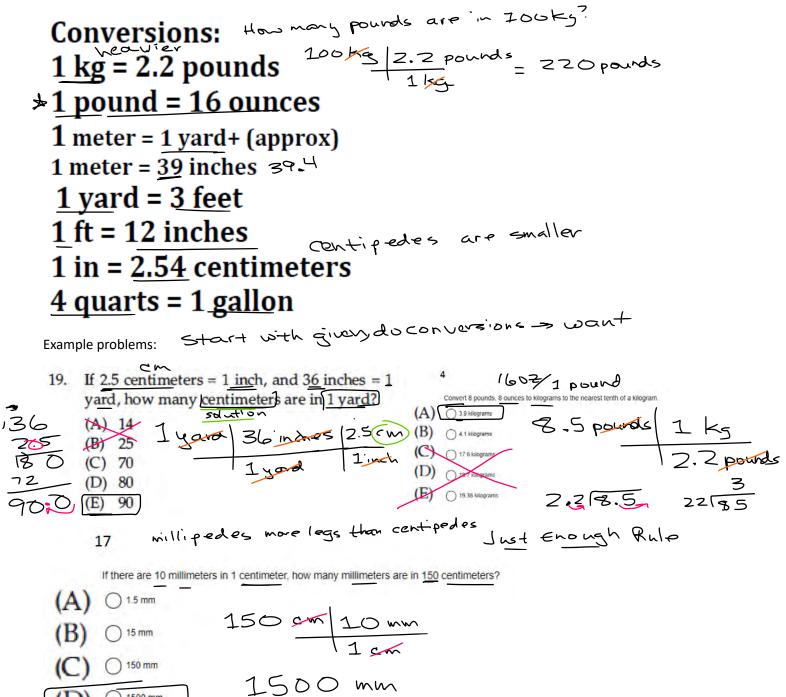
Exponent memory aids (5^{th} most asked on the <u>MK</u>)

Exponent rules:

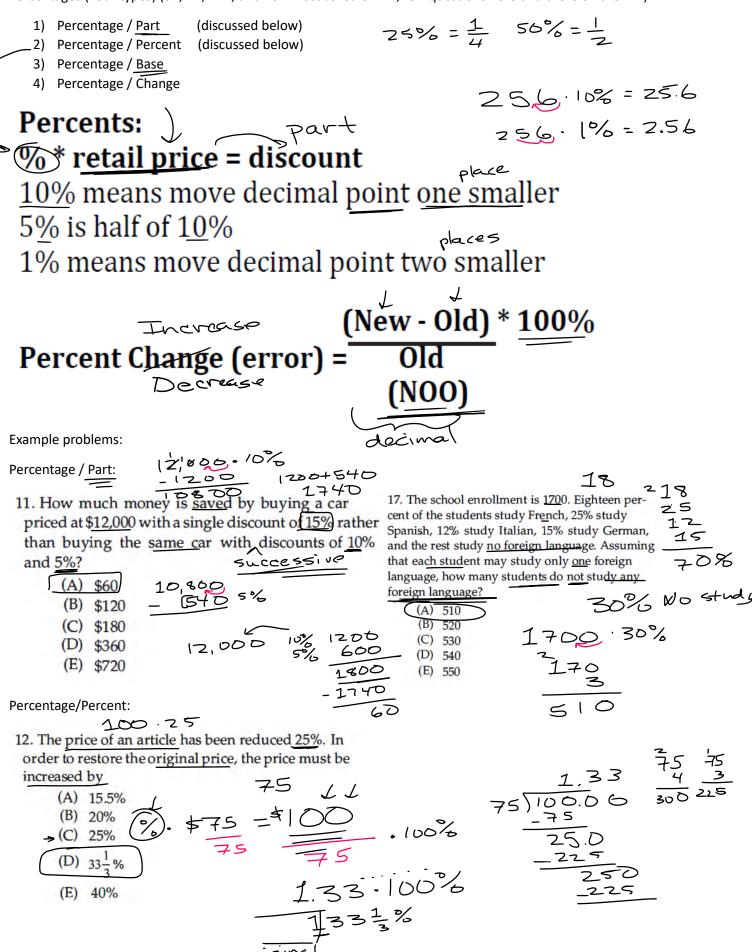
$$a^{0} = 1$$
 (One zero to rule them all) $a^{2} = b^{2} = (4 \times 52)^{2} = 1$
 $a^{m*}a^{n} = a^{m+n}$ (Helper exponents) $a^{b} \cdot a^{c} = a^{b+c}$
 $(\underline{a^{m}})^{n/2} = a^{m*n}$ (Double team the a) $(x^{n})^{n} = x^{2^{n}} = x^{2^{n}}$
 $(\underline{a^{m}})^{n/2} = a^{m*n}$ (mooks down on n (second class citizen)) $x^{4} = x^{2^{n}} = x^{2^{n}}$
 $a^{n} = 4 \times z^{2^{n}}$
 $(\underline{ab})^{n} = a^{n}b^{n}$ (Distribution rule) $(3 \times z)^{2} = 3^{2} \times z = 9x^{2}$
 $a^{-1} = \frac{1}{a}$ (flip me over rule) $\frac{1}{a^{2^{n}}} = a^{2^{n}}$
 $a^{-1} = \frac{1}{a}$ (flip me over rule) $\frac{1}{a^{2^{n}}} = a^{2^{n}}$
 $a^{-1} = \frac{1}{a}$ (flip me over rule) $\frac{1}{a^{2^{n}}} = a^{2^{n}}$
 $a^{-1} = \frac{1}{a}$ (flip me over rule) $\frac{1}{a^{2^{n}}} = a^{2^{n}}$
 $a^{-1} = \frac{1}{a}$ (flip me over rule) $\frac{1}{a^{2^{n}}} = a^{2^{n}}$
 $a^{-1} = \frac{1}{a}$ (flip me over rule) $\frac{1}{a^{2^{n}}} = a^{2^{n}}$
 $a^{-1} = \frac{1}{a}$ (flip me over rule) $\frac{1}{a^{2^{n}}} = a^{2^{n}}$
 $a^{-1} = \frac{1}{a}$ (flip me over rule) $\frac{1}{a^{2^{n}}} = a^{2^{n}}$
 $a^{-1} = \frac{1}{a}$ (flip me over rule) $\frac{1}{a^{2^{n}}} = a^{2^{n}}$
 $a^{-1} = \frac{1}{a}$ (flip me over rule) $\frac{1}{a^{2^{n}}} = a^{2^{n}}$
 $a^{-1} = \frac{1}{a}$ (flip me over rule) $\frac{1}{a^{2^{n}}} = a^{2^{n}}$
 $a^{-1} = \frac{1}{a}$ (flip me over rule) $\frac{1}{a^{2^{n}}} = a^{2^{n}}$
 $a^{-1} = \frac{1}{a}$ (flip me over rule) $\frac{1}{a^{2^{n}}} = a^{2^{n}}$
 $a^{-1} = \frac{1}{a}$ (flip me over rule) $\frac{1}{a^{2^{n}}} = a^{2^{n}}$
 $a^{-1} = \frac{1}{a}$ (flip me over rule) $\frac{1}{a^{2^{n}}} = a^{2^{n}}$
 $a^{-1} = \frac{1}{a}$ (flip me over rule) $\frac{1}{a^{2^{n}}} = a^{2^{n}}$
 $a^{-1} = \frac{1}{a}$ (flip me over rule) $\frac{1}{a^{2^{n}}} = \frac{1}{a^{2^{n}}} = \frac{1$

C. 95
D. 102
E. None of the above
$$2^{2} = 2^{3}$$

 $2^{2} = 2^{3}$
 $3^{2} = 2^{3}$
 $3^{2} = 2^{3}$
 $3^{2} = 2^{3}$


95

С.


1500 mm

) 15,000 mm

(E)

Percentages (Four types) (3rd, 4th, 11th, and 15th most asked on AR; few questions here and there on the MK)

1. Question

\longrightarrow athletes

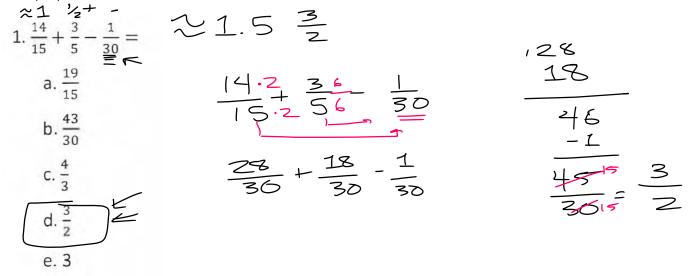
At West High School, 30% of athletes run cross country. At the school, 50% of the students are involved in athletic activities. What percentage of students run cross

country?	100 students - 50% = 50.30% =
O15%	
O 10%	$\frac{1}{2}$ 50 0.3
O 30%	0.3
O 25%	150

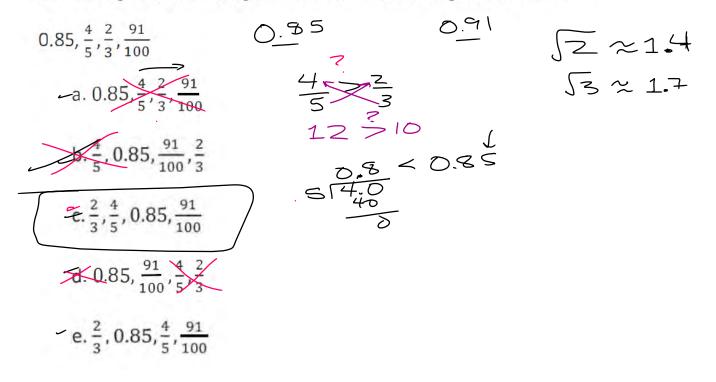
.

"Up and Up" Method for comparing fractions

Example problems: AR


- A class of 198 recruits consists of three racial 20
- 2. A car has a gasoline tank that holds 20 17. gallons. When the gauge reads $\frac{1}{4}$ <u>jull</u>, how many gallons are needed to fill the tank? (A) 16 20-1 = 5gallons n tank (B) 15

A class of <u>198</u> recruits consists of three racial and ethnic groups $If \frac{1}{3}$ are black and $\frac{1}{4}$ of the remainder are Hispanic, how many of the recruits in the class are white? (A) <u>198</u> (B) <u>165</u> <u>135</u> <u>41135</u> <u>135</u> <u>41135</u> (D) <u>99</u> <u>2101</u>


Example problems: MK

(C) 10 (D) 5€

(E) 4

24. Arrange the following numbers from least to greatest value:

